ORKA: Precise Measurement of $K^+ \to \pi^+ \nu \bar{\nu}$ at Fermilab David E. Jaffe #### Outline Motivation E949 experimental method Improvements for ORKA Detector acceptance Kaon production and transport Sensitivity and backgrounds Cost and schedule Conclusions David E. Jaffe (BNL) PXPS2012 18 June 2012 2 / 44 # Rare Decays in the LHC Era Access to mass scales above 1 TeV #### New Physics found at LHC New particles with unknown flavorand CP-violating couplings ### New Physics NOT found at LHC Precision flavor-physics experiments needed to help sort out the flavor- and CPV-couplings of the NP. # Precision flavor-physics **experiments needed** to access mass scales beyond the LHC reach through virtual effects. 1(2) $$\mu \to e\gamma$$, $\mu \to e$ conversion, $\pi^+(K^+) \to e^+\nu$ $$K^+ \rightarrow \pi^+ \nu \bar{\nu}, K_L^0 \rightarrow \pi^0 \nu \bar{\nu}$$ 3(3) $$b \rightarrow s\gamma$$, $B \rightarrow \mu\mu$, $(\tau \rightarrow \mu\gamma)$ # Special status: small SM uncertainty and large NP reach # $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ in the Standard Model The $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ decays are the most precisely predicted FCNC decays with quarks - A single effective operator $(\overline{s}_L \gamma^\mu d_L)(\overline{v}_L \gamma_\mu v_L)$ - Dominated by top quark (charm significant, but controlled) - · Hadronic matrix element shared with Ke3 - Uncertainty from CKM elements (will improve) - Remains clean in most New Physics models (unlike many other observables) Brod, Gorbahn, Stamou PR **D83**, 034030 (2011) $B_{SM}(K^+ \to \pi^+ \nu \bar{\nu}) = (7.8 \pm 0.8) \times 10^{-11}$ David E. Jaffe (BNL) PXPS2012 18 June 2012 4 / 4 # Sensitivity to New Physics Figure 1: Correlation between the branching ratios of $K_L \to \pi^0 \nu \overline{\nu}$ and $K^+ \to \pi^+ \nu \overline{\nu}$ in MFV and three concrete NP models. The gray area is ruled out experimentally or model-independently by the GN bound. The SM point is marked by a star. David E. Jaffe (BNL) PXPS2012 18 June 2012 5 / 44 # Challenges of measuring $K^+ \to \pi^+ \nu \bar{\nu}$ $\mathcal{B}_{\rm SM}(K^+ \to \pi^+ \nu \bar{\nu}) = 0.0000000000078$ $\mathcal{B}(K^+ \to \pi^+ \pi^0) = 0.21$ $\mathcal{B}(K^+ \to \mu^+ \nu) = 0.63$ Experimentally weak signature with backgrounds exceeding signal by $> 10^{10}\,$ 18 June 2012 - lacktriangle Determine everything possible about the K^+ and π^+ - π^+/μ^+ particle ID better than $10^6~(\pi^+ ightarrow \mu^+ ightarrow e^+)$ - Work in CM system (stopped K⁺) - ▶ Eliminate events with photons or extra charged particles - $lacktriangledown \pi^0$ rejection $> 10^6$ (Every detector element is a veto) - lacktriangle Suppress backgrounds well below expected signal (S/N \sim 10) - Use "Blind analysis" techniques - Predict backgrounds from data: dual independent cuts - ► Test predictions with outside-the-signal-region measurements - Evaluate candidate events with S/N function David E. Jaffe (BNL) PXPS2012 # E949 Experimental Method In the standard model, 78 of 1,000,000,000,000 K^+ decays are to $\pi^+ \nu \bar{\nu}$. ### Measure everything possible - ▶ 710 MeV/c K^+ beam - Stop K⁺ in scintillating fiber target - Wait at least 2 ns for K⁺ decay (delayed coincidence) - Measure π⁺ momentum in drift chamber - Measure π⁺ range and energy in target and range stack (RS) - ▶ Stop π^+ in range stack - Observe $\pi^+ \to \mu^+ \to e^+$ in range stack - Veto photons, charged tracks # E949/E787 Results $$\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) = (1.73^{+1.15}_{-1.05}) \times 10^{-10}$$ Standard model $(0.78 \pm 0.07) \times 10^{-10}$ $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})$ was evaluated with a likelihood method that takes into account the signal-to-background ratio S/B of the individual candidates. David E. Jaffe (BNL) PXPS2012 18 June 2012 8 / 44 # ORKA is a 4th Generation Detector - x100 sensitivity x10 from kaon flux, x10 from detector David E. Jaffe (BNL) PXPS2012 18 June 2012 9 / 44 # **Detector Acceptance** ORKA detector improvements will enable increases in signal acceptance. Expected increases are based largely on E949/E787 data and measurements. | Component | Acceptance factor | |-----------------------------------|-------------------------| | $\pi ightarrow \mu ightarrow e$ | 2.24 ± 0.07 | | Deadtimeless DAQ | 1.35 | | Larger solid angle | 1.38 | | 1.25-T B field | 1.12 ± 0.05 | | Range stack segmentation | 1.12 ± 0.06 | | Photon veto | $1.65^{+0.39}_{-0.18}$ | | Improved target | 1.06 ± 0.06 | | Macro-efficiency | 1.11 ± 0.07 | | Delayed coincidence | 1.11 ± 0.05 | | Product (R_{acc}) | $11.28^{+3.25}_{-2.22}$ | Uncertainty estimates in acceptance factors based on E949/E787 data. David E. Jaffe (BNL) PXPS2012 18 June 2012 10 / 44 # $\pi \to \mu \to e$ Acceptance Factors - 1. Identify range stack counter where π^+ stops - Detect $\pi \to \mu$ decay in stopping counter - 3. Detect $\mu \rightarrow e$ in stopping counter and neighboring counters $\pi \rightarrow \mu \rightarrow e$ in E787/E949 range stack David E. Jaffe (BNL) # Detector Improvements and $\pi \to \mu \to e$ Acceptance - 1. Eliminate 4x multiplexing of range stack (RS) waveform digitizers used in F949. - Reduced loss due to accidentals - 2. E949 RS: 19 layers (1.9cm thick), 24 azimuthal sectors. ORKA RS: 30 layers (0.95cm thick), 48 sectors. - Reduced accidental veto loss (μ⁺ and e⁺) - ▶ Improved discrimination of π and μ - 3. Increased RS scintillator light yield by higher QE photodetectors and/or better optical coupling. - Improved μ identification - 4. Deadtime-less DAQ and trigger: $\pi \to \mu \to e$ acceptance improvements; rudimentary $\pi \to \mu$ identification was an essential component of the $K^+ \to \pi^+ \nu \bar{\nu}$ trigger in E787/E949. David E. Jaffe (BNL) PXPS2012 18 June 2012 12 / 44 # Livetime and Delayed-Coincidence Acceptance | | | Macro-efficiency | | | |---------------------|------|---------------------|-----------------|--| | Livetime | | E949 average | 0.76 | | | E949 livetime | 0.74 | E949 best week | 0.84 | | | ORKA estimate | 1.00 | MiniBooNE (FY08) | 0.85 | | | Acceptance increase | 1.35 | ORKA estimate | 0.85 ± 0.05 | | | | | Acceptance increase | 1.11 ± 0.07 | | E949 required a delayed coincidence of 2 ns between the stopped kaon and the outgoing pion to suppress prompt backgrounds. | | Delayed coincidence | | | |-----------------|---------------------|-------------------|--| | E949 acceptance | | 0.763 | | | ORKA estimate | | 0.851 ± 0.035 | | | | Acceptance increase | 1.11 ± 0.05 | | David E. Jaffe (BNL) PXPS2012 18 June 2012 13 / 44 # Improved Momentum and Range Resolution and Increased Solid Angle | ORKA/E949 momentum resolution | 0.90 | Increase B from 1 T | |-------------------------------|-----------------|-----------------------| | Acceptance increase | 1.12 ± 0.05 | to 1.25 T | | ORKA/E949 range resolution | 0.87 ± 0.05 | More finely segmented | | Acceptance increase | 1.12 ± 0.06 | range stack | | E949/E787 energy resolution | 0.93 | Improved calibration | | Acceptance increase | 1.12 | | Solid angle increase | John angle merease | | | | | |---------------------|---------------|-------------|-------------|---------| | | Drift chamber | Range Stack | Barrel veto | Lengths | | E949 | 50.8 | 180 | 190 | cm | | ORKA | 84.7 | 250 | 350 | cm | | Acceptance increase | 1.38 | | | | David E. Jaffe (BNL) PXPS2012 18 June 2012 14 / 44 # Photon Veto and Target Improvements | Photon veto | | | | | |---------------------|------------------------|--|--|--| | E949 | 17.3 radiation lengths | | | | | ORKA | 23.0 radiation lengths | | | | | Acceptance increase | $1.65^{+0.39}_{-0.18}$ | | | | Estimated increase taken from simulated KOPIO PV performance. KOPIO simulation was adjusted to agree with E949 PV efficiency. | T: | arget | π^{π^+} | |---------------------|------------------------|----------------| | E949 | 3.1 m long, single-end | K ⁺ | | ORKA | 1.0 m long, double-end | MPPC | | Acceptance increase | 1.06 ± 0.06 | Target Fibers | David E. Jaffe (BNL) PXPS2012 18 June 2012 15 / 44 #### •KTeV/Sea-Quest Hall: Existing beam transport, Rad firm, small hall, no magnet, existing and possible future Drell-Yan program. #### •CDF(B0) collision hall: Existing tunnels and hall, Rad hard, adequate hall, magnet, A0->B0 beam-line required. Steve Kettell with the BNL-E949 Central tracker (similar diameter to ORKA) ### Rate of Incident Kaons The expected rate of kaons incident on ORKA: $$N_K({ m ORKA})/{ m spill} = N_K({ m E949})/{ m spill} \times R_{ m surv} \times R_{ m proton} \times R_{K/p}$$ = $12.8 \times 10^6 \times 1.4408 \times 0.7385 \times (6.5 \pm 0.8)$ = $(88.5 \pm 10.9) \times 10^6$. - ▶ $R_{\rm surv} = 1.4408$, the relative rate of survival of 600 MeV/c kaons in the 13.74m ORKA K^+ beamline compared to 710 MeV/c K^+ in the 19.6m E949 beamline, - $R_{\rm proton} = (48 \times 10^{12})/(65 \times 10^{12})$ protons per spill, - ▶ $R_{K/p} = 6.5 \pm 0.8$, the relative K^+ production rate into the ORKA and E949 kaon beamline acceptance as determined from MARS-LAQSGM simulation. David E. Jaffe (BNL) PXPS2012 18 June 2012 19 / 44 # Instantaneous and stopped kaon rates For a 4.4 s spill every 10 s, the kaon instantaneous rate is $$N_K/s({\rm inst.}) = (88.5 \pm 10.9) \times 10^6/4.4s = (20.1 \pm 2.5) \times 10^6~K^+/s$$ A K^+/π^+ ratio of 3.31 is expected, so the total instaneous rate would be 26.2 MHz compared to 8.4 MHz in E949. For a kaon stopping fraction of 0.54 ± 0.12 , in one year of running (5000) hours= 18×10^6 s), the total number of stopped kaons in the experimental target is $$\begin{split} N_{\rm Kstop}/{\rm year} &= (88.5 \pm 10.9) \times 10^6/10.0 {\rm s} \times (18 \times 10^6 \ {\rm s}) \times (0.54 \pm 0.12) \\ &= (8.6 \pm 2.2) \times 10^{13} \ . \end{split}$$ David E. Jaffe (BNL) PXPS2012 18 June 2012 20 / 44 $$K^+ \to \pi^+ \nu \bar{\nu}$$ Events per Year The number of signal events per 5000-hour year is $$\begin{array}{lcl} \textit{N} & = & \mathcal{B}_{\textit{SM}} \times \textit{N}_{\rm Kstop} \times \textit{A}_{\rm E949} \times \textit{R}_{\rm acc} \times \mathcal{S}'_{\rm loss} \\ & = & (0.781^{+0.084}_{-0.077}) \times 10^{-10} \times (8.6 \pm 2.2) \times 10^{13} \times (3.59 \pm 0.36) \times 10^{-3} \\ & & \times (11.3^{+3.3}_{-2.3}) \times (0.77 \pm 0.02) \end{array}$$ = 210 SM-level events per year #### where - ► A_{E949} is the E949 acceptance, - $ightharpoonup R_{ m acc}$ is the product of acceptance factors gained over E949, - $ightharpoonup \mathcal{S}'_{\mathrm{loss}}$ is expected relative loss of acceptance due to the higher OKRA instantaneous rate Due to the availability of considerable data from E949, we are able to provide a good estimate of the uncertainty in the SM-level signal yield for ORKA of approximately 40%. In contrast, many previous rare decay experiments encountered unexpected factors that led to large (even orders of magnitude) deviations from the initial sensitivity predictions. # Sensitivity and Backgrounds - ► Kaon production at 95 GeV may introduce accidental hits in ORKA; no evidence in E787/E949 for background due to the primary beam. Assume same background sources in ORKA as E949. - Assume the S/B ratio in the PNN1 & PNN2 subregions is the same as E949. **ORKA Relative uncertainty on B**($K^+ \rightarrow \pi^+ \nu \bar{\nu}$) # ORKA measurements & thesis topics $$ightharpoonup$$ K⁺ $ightharpoonup$ $\pi^+ uar{ u}(1)$ ^{T,P} $$ightharpoonup$$ K⁺ $ightharpoonup$ $\pi^+ uar{ u}(2)$ T,P $$K^+ \to \pi^+ \nu \bar{\nu} \gamma$$ $$K^+ \rightarrow \pi^+ X^P$$ $$ightharpoonup K^+ o \pi^+ \tilde{\chi}_0 \tilde{\chi}_0(\mathsf{FF})^{P}$$ $$K^+ \rightarrow \pi^+ \pi^0 \nu \bar{\nu}^{T,P}$$ $$K^+ \rightarrow \pi^+ \pi^0 X$$ $$ightharpoonup K^+ o \mu^+ \nu_h$$ (heavy neutrino) T $$ightharpoonup K^+ ightarrow \mu^+ \nu M \ (M = majoran)$$ $$ightharpoonup K^+ ightarrow \mu^+ u ar{ u} u$$ $$K^+ \rightarrow \pi^+ \gamma^{TP}$$ $$ightharpoonup K^+ o \pi^+ \gamma \gamma^P$$ $$ightharpoonup K^+ o \pi^+ \gamma \gamma \gamma$$ $$K^+ \to \pi^+ \mathrm{DP}; \mathrm{DP} \to e^+ e^-$$ $$\Gamma(K^+ \to e^+ \nu) / \Gamma(K^+ \to \mu^+ \nu)$$ $$\Gamma(K^+ \to \pi^+ \pi^0) / \Gamma(K^+ \to \mu^+ \nu)$$ $$K^+ \to \pi^+ \pi^0 e^+ e^-$$ • $$K^+ \to \pi^- \mu^+ \mu^+ \text{ (LFV)}$$ $$\blacktriangleright \pi^0 \to \text{nothing } T,P$$ $$\rightarrow \pi^0 \rightarrow \gamma DP: DP \rightarrow e^+e^-$$ $$\rightarrow \pi^0 \rightarrow \gamma X$$ ^TE787/E949 Thesis; P E787/E949 Publication; DP \equiv Dark Photon David E. Jaffe (BNL) PXPS2012 23 / 44 # The ORKA Collaboration Sixteen institutes spanning six nations: Canada, China, Italy, Mexico, Russia, USA - > Five US universities now, in active discussion with several others - ➤ Two US National Laboratories - Leadership from US rare kaon decay experiments from the past 20+ years New collaborators welcome! ### Cost and Schedule Total project cost estimate of \$53M (FY2010) based on E949 experience and FNAL FY99 fixed target operations. More work is needed after designs mature. | Milestone/Activity | Time Period | |------------------------------------------|-------------| | Stage One Approval | Dec 2011 | | DOE Approval of Mission Need (CD-0) | Fall 2012 | | Approve Alt. Selection/Cost Range (CD-1) | Spring 2013 | | Baseline Review (CD-2) | End of 2013 | | Start Construction (CD-3) | Spring 2014 | | Begin Installation | Mid-2015 | | First Beam/Beam Tests | End of 2015 | | Complete Installation | Mid-2016 | | First Data (CD-4) | End of 2016 | # $K^+ \to \pi^+ \nu \bar{\nu}$ Roadmap: ORKA and NA62 CERN NA62 decay-in-flight experiment. Builds on NA31/NA48 experience. - Unseparated 75 GeV , GHz beam - ► Aim: 40-50 SM events/year - ▶ Majority of sensitivity in PNN2 region complementary to ORKA - ▶ Under construction; data-taking start > 2013 - ▶ 2017 NA62 results NP? ORKA will provide a definitive measurement with a completely different method No NP? ORKA will push the hunt for NP with much higher sensitivity ### Conclusions The Fermilab mission focus for the coming decades is accelerator-driven intensity frontier research. Precise measurement of $K^+ \to \pi^+ \nu \bar{\nu}$ is broadly recognized to be one of the most compelling accelerator-driven intensity frontier experiments. - ▶ ORKA proposal: 1000 event $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ measurement at FNAL MI - ▶ Proven technique; experienced team; leveraged resources - Guaranteed high-impact measurement - ► Matches SM uncertainty; covers all accessible non-SM physics up to 1000 TeV mass scale - Goal endorsed by HEPAP/P5 and Fermilab PAC - ► Granted FNAL Stage One approval: Dec 2011 - Cost estimate \$53M (FY2010) - Excels relative to competition at CERN David E. Jaffe (BNL) PXPS2012 18 June 2012 27 / 4 # Extras # Summary of SM Theory Uncertainties CKM parameter uncertainties dominate the error budget today. With foreseeable improvements, expect total SM theory error ≤6%. A. Kronfeld Unmatched by any other FCNC process (K or B). 30% deviation from the SM would be a 5σ signal of NP SM theory error for $K_L^0 \otimes \pi^0 \nabla \overline{\nabla}$ mode exceeds that for $K^+ \otimes \pi^+ \nabla \overline{\nabla}$. U. Haisch, arXiv:0707.3098 23 # $K^+ \to \pi^+ \nu \overline{\nu}$ History #### Pion Range vs. Energy E787/E949 Final: 7 events observed $B(K^+ \to \pi^+ \nu \overline{\nu}) = 1.73^{+1.15}_{-1.05} x 10^{-10}$ Standard Model: 11 20 # Consideration of NOvA and ORKA Joint Sensitivities # Sensitivity - ▶ Under simple assumptions, the fractional precision of the measured $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})$ is comparable to the projected theoretical uncertainty of 6%. - ▶ E949 has demonstrated that a likelihood-based technique can improve the sensitivity by taking into account the variation in S/B in the signal region. - Extensive methodology to determine the background rates and signal acceptance from data was developed and refined by E949/E787. This methodology provides the basis for suppressing systematic uncertainties and enabling precise measurement of $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})$. David E. Jaffe (BNL) PXPS2012 18 June 2012 32 / 44 The probability of all observed candidates to be due to background is 0.001. $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})$ was evaluated with a likelihood method that takes into account the signal-to-background ratio S/B of the individual candidates. David E. Jaffe (BNL) PXPS2012 18 June 2012 33 / 44 E949 background and acceptance David E. Jaffe (BNL) | Background | PNN2 | PNN1 Standard | PNN1 Extended | |---------------------|----------------------------|---------------------|---------------------| | $K_{\pi 2(\gamma)}$ | $0.695\pm^{0.164}_{0.180}$ | 0.019 ± 0.004 | 0.216 ± 0.023 | | Muon | 0.011 ± 0.011 | 0.015 ± 0.002 | $0.068\!\pm\!0.011$ | | K_{e4} | $0.176\pm_{0.143}^{0.244}$ | | | | Beam | 0.001 ± 0.001 | 0.007 ± 0.003 | 0.009 ± 0.003 | | CEX | $0.013\pm^{0.016}_{0.013}$ | $0.004\!\pm\!0.001$ | $0.005\!\pm\!0.001$ | | Total | $0.93\pm^{0.36}_{0.29}$ | $0.05\!\pm\!0.01$ | 0.30 ± 0.03 | | $Acc.(10^{-3})$ | 1.37 ± 0.14 | 1.69 ± 0.14 | 2.22 ± 0.17 | PXPS2012 18 June 2012 34 / 44 ## Front-end electronics and redundancy - ► Front-end electronics for each photodetector-based readout will consist of a base and signal splitter that feeds a waveform digitizer (WFD), an ADC and a multihit TDC. - ▶ The WFD would be a 500-MHz, 10-bit ADC. - ▶ The ADC would be a lower frequency WFD with more dynamic range. - ▶ Experience with E949/E787 has shown that the redundancy provided by a TDC, ADC and WFD on each channel is important for high photon veto and signal detection efficiency. David E. Jaffe (BNL) PXPS2012 18 June 2012 35 / 44 ## $\pi \to \mu \to e$ acceptance factors Positive identification of π^+ achieved by identification of $\pi \to \mu$ decay in range stack (RS) counter where π^+ stops and subsequent detection of $\mu \to e$ in stopping counter and neighboring counters. | Quantity | Acceptance | Range | |--------------------|-----------------|------------------| | π decay | 0.8734 | (3,105) ns | | μ decay | 0.9450 | $(0.1,10)~\mu s$ | | μ escape | 0.98 | | | e^+ detection | 0.97 ± 0.03 | | | Product | 0.78 ± 0.02 | | | E949 acceptance | 0.35 | | | Improvement factor | 2.24 ± 0.07 | | Lower time limit for pion decay driven by ability to resolve 3.0 MeV energy deposit of μ^+ . μ escape takes in account acceptance loss due to μ exitting stopping counter without depositing sufficient energy (1 MeV) for detection. | Solid Angle Increase | Drift chamber | RS | Barrel veto | Lengths | | |----------------------|---------------|-----|-------------|---------|--| | E949 | 50.8 | 180 | 190 | cm | | | ORKA | 84.7 | 250 | 350 | cm | | | Acceptance increase | 1.38 | | | | | # Livetime and delayed-coincidence acceptance - 1. E949 had a typical deadtime of 26%. A deadtimeless DAQ and trigger would gain 1.35 in acceptance. - 2. The "macro-efficiency" of the best week for E949 was 0.84 and is consistent with 2008 MiniBooNE and SciBooNE performance. An estimated ORKA macro-efficiency of 0.85 ± 0.05 represents a factor of 1.11 ± 0.07 improvement compared to the E949 average of 0.76. - 3. E949 required a delayed coincidence of 2 ns between the stopped kaon and the outgoing pion to suppress prompt backgrounds. The overall online and offline acceptance of this requirement was 0.763 in E949. A deadtimeless DAQ and trigger are assumed to attain an acceptance of 0.851 \pm 0.035 with a (2.0 \pm 0.5) ns requirement for a gain of 1.11 \pm 0.05. # Improved momentum and range resolution - 1. Increasing the B-field from 1 T to 1.25 T improves the momentum resolution by 0.90. This improvement is estimated to increase the acceptance by 1.12 ± 0.05 . (The energy resolution of E949 was improved by 0.93 compared to E787 and the acceptance increased by 1.12.) - 2. A more finely segmented RS is estimated to improve the range resolution by 0.87 \pm 0.05 which would give an acceptance increase of 1.12 \pm 0.06. David E. Jaffe (BNL) PXPS2012 18 June 2012 39 / 44 David E. Jaffe (BNL) Solid angle increase The E949 drift chamber was 50.8 cm long at the outer radius of 43.3 cm. A solid angle acceptance increase of 1.38 would be achieved by lengthening the drift chamber to 84.7 cm. This requires increasing the RS from 1.8m to \sim 2.5 m and the barrel photon veto from 1.9m to ~ 3.5 m. PXPS2012 18 June 2012 40 / 44 # Photon veto and target improvements - 1. The barrel region of ORKA would be 23 radiation lengths (rl) compared to 17.3 rl in E949 and is estimated to increase the acceptance by $1.65^{+0.39}_{-0.18}$. The estimate is based on simulation studies of the KOPIO $(K_L^0 \to \pi^0 \nu \bar{\nu} \text{ experiment})$ photon veto of thicknesses of 16, 18, 21.6 and 26 rl. The KOPIO simulation was adjusted to agree with measured E949 photon veto performance. - 2. The E949 scintillating target had 3.1m long, 5mm square fibers with single-ended readout. of each fiber. In ORKA, double-ended readout of a $\sim\!1$ m long target would increase the light yield and improve the measurement of the kaon decay point in the beam direction. The acceptance is estimated to increase by 1.06 ± 0.06 . ### E949 detector David E. Jaffe (BNL) PXPS2012 # Preliminary Total Project Cost Estimate (FY10 \$M) | WBS | Description | Total | 60% | Total | |---------|-----------------------|-------|----------|---------| | element | | Cost | conting. | w/cont. | | 1.0 | Total Project Cost | 33.3 | 20.0 | 53.3 | | 1.1 | Accelerator and Beams | 7.5 | 4.5 | 12.0 | | 1.2 | Detector | 22.4 | 13.4 | 35.8 | | 1.3 | Project Management | 2.7 | 1.6 | 4.4 | | 1.4 | Other Project Cost | 0.7 | 0.4 | 1.1 | - ▶ Based on E949 experience or Fermilab FY99 fixed target operations. - Includes use of an existing solenoid. - ▶ More work is needed after mature designs have been made.